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Abstract. We study (inverse) photoemission from systems with strong coupling of doped carriers to
phonons. Using an adiabatic approximation, we develop a method for calculating spectra. This method is
particularly simple for systems where the electron-phonon coupling can be neglected in the initial state,
e.g., the undoped t-J model. The theory then naturally explains why the electron-phonon coupling just
leads to a broadening of spectra calculated without electron-phonon coupling, without changing the dis-
persion. This is in agreement with recent angle-resolved photoemission spectroscopy (ARPES) on undoped
cuprates, and it supports the interpretation in terms of strong electron-phonon interaction. The theory
also shows that for systems with strong electron-phonon coupling in the initial state, the result cannot in
general be related to the spectrum obtained without electron-phonon coupling.

PACS. 71.38.-k Polarons and electron-phonon interactions — 79.60.-i Photoemission and photoelectron

spectra — 71.10.Fd Lattice fermion models

1 Introduction

Angle-resolved photoemission spectroscopy (ARPES) ex-
periments have found evidence for strong electron-phonon
interaction (EPI) and polaron physics in many materials
like quasi-one-dimensional conductors [1,2], the mangan-
ites [3], or the undoped high-T.. cuprates [4-7]. The spectra
show an incoherent broad feature whereas the quasi-
particle peak at lower binding energy is strongly sup-
pressed. In the case of the undoped high-T, cuprates, the
dispersion of that broad peak matches the quasi-particle
dispersion calculated in purely electronic models [6]. For
an undoped t-J model with coupling of doped holes to
optical phonons, numerical calculations of the ARPES
spectra indeed showed broad features tracing the disper-
sion of the quasi-particles in the original t-J model [8].
Similar observations in the manganites [3] and quasi-
one-dimensional conductors [1,2] have been interpreted in
analogy with a single electron coupled to harmonic os-
cillators [9] and a related sum-rule for the first spectral
moment. With respect to the manganites also the picture
of the photohole seeing a frozen lattice has been used [10].

In this paper we address (inverse) photoemission spec-
tra from systems with strong coupling of doped carriers to
phonons. We develop a theory based on the adiabatic ap-
proximation. This theory takes a particularly simple form
if the EPI can be neglected in the initial state. This is
the case for the undoped ¢-J model and the empty or
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full Holstein model. The spectrum can then be related to
the spectrum of a model without EPI, and the effect of
the EPI is essentially to broaden the spectrum. For sys-
tems where the EPI is important also in the initial state,
the theory takes a more complicated form. It can then
be related to an average of spectra for distorted lattices
without EPI.

After giving general arguments in Section 2 we discuss
numerical results for the Holstein model (Sect. 3) and the
t-J model with phonons (Sect. 4) as illustrating examples.

2 General considerations

We consider a system that is modeled by the following
Hamiltonian:

H=H, +th+Hep- (1)

H.; (Hpp) describes the purely electronic (phononic) part
of the model whereas the interaction between electrons
and phonons is given by H,),.

The phonons are assumed to be harmonic in the ab-
sence of EPI and the system is taken to be translationally
invariant, so that we can write:

1
Hpp = Z 5 (Hq,vﬂfq,v + Wz,qu,vaq,u) . (2)

q,v
Here, an individual phonon mode with frequency wq,,, has
wavevector q and belongs to branch v. Its generalized co-

ordinate and momentum are denoted by Qgq,, and I, .
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The EPI couples electronic degrees of freedom to the
phonon coordinates (Qq,,. We assume that this interaction
vanishes for a certain electronic filling of the system which
we will refer to as undoped in the following. The com-
pletely empty or completely filled Holstein or Holstein-t-J
model are examples for such undoped systems, see Sec-
tions 3 and 4.

In addition, we assume that the phonon frequencies
are small compared to the electronic energy scales de-
fined by H,;. This justifies an adiabatic approximation [11]
and we can first consider only H. + He, treating the
phonon coordinates Qq,, in H,p, as c-numbers, i.e. as in-
stantaneous parameters for the electronic problem. We
denote the corresponding eigenstates and eigenvalues by
|EN<(Q)) and EN¢(Q) which are labeled by the number
of electrons N, and other quantum numbers m. We use Q
as a shorthand notation for the set of phonon coordinates.
The phonon eigenfunctions are then obtained by solving

(Z %nq,yn,q,y + vﬁe(Q)) Omn(Q) = e (Q),

q,v
(3)
a Schrodinger equation with the effective potential

Vrfzve(Q) +Z 2 unqWQ q,V (4)

The eigenenergies are ¢Y¢ where n stands for suitable

phonon quantum numbers. In our approximation the
eigenstates of H are (Q|ele ) = ¢Ne (Q) |[EN(Q)), i.e. we
assume that the electronic states |E;y°(Q)) do not mix.
The ground-state in a system with N, electrons is
then given by (Qleos) = ¢gg (Q) |E)“(Q)) with eigen-
energy Eévoe. In case of an undoped system with N? elec-
trons there is no EPI and the phonon wavefunction just
corresponds to the ground-state of Hpp:
0
906 (Q) = [[(wan/m"/* exp(-wa,Q3,/2).  (5)
q,V
The electronic ground—stage and igcs eigenenergy are then
independent of Q, and £,¢ = E,° + > qw Wav/2-
We now do (inverse) photoemission at zero temper-
ature by destroying (creating) an electron with momen-
tum k and spin ¢ in the ground-state of a system with

N, electrons. Within the adiabatic approximation this can
be described by considering the following Green’s function

1 N,
"
e

_ / iQ / Q60" (Q)EY- (Q)]o!
1

GroF(2) = (e[t

x (Q| IQ WIEY (Q))ods (Q)

(6)
where ¢ = cl(jzr and [dQ =], [ dQq,.-

We proceed in analogy to reference [12] and neglect
the kinetic energy of the phonons in the resolvent in equa-
tion (6). Now H is diagonal in the phonon coordinates Q
and one half of the integrations in equation (6) can be
eliminated. This leads to the following approximation for
the Green’s function [12]:

G- / 1Q |63 Qe F (5q.Q)  (7)
where
gk:q:(zQaQ)*

EN(Q)] = ! YIEY(Q) (8

QW —— e B @)
and

Zq = z—l—VONE(Q) —eé\(f.

Finally, the corresponding spectral function is given by
Al T (w) = —1 G

/ aQ 16 Q)oY T (@, Q) (9)

Ne ¥ (w—i07)

where
Pt (@, Q) =Y (ENTHQIYIEN(Q))?

— (Ve THQ) = 157 (Q)))

(Q)) in the adiabatic electronic ba-

x 0(w (10)
after expanding | B}’
sis states |[EN-F1(Q)).

Equations (9-10) will turn out to be the key formula
for interpreting ARPES spectra of undoped systems. To
see this we observe that pke’:F( , Q) is the spectral func-
tion of the system without EPI for a given lattice distor-
tion Q. If we assume that VON °(Q) has a non-degenerate
absolute minimum at Q,,;, the corresponding ground-
state phonon wave-function will be localized around this
point in coordinate space. If we approximate |¢é\/06 (Q)]? ~
0(Q—Qnin) we find that the spectrum corresponds to the
spectrum one obtains for the system with a frozen distor-
tion Qnin in which there is no EPI. Analogously, 1n case
of more than one (quasi-)degenerate minima of Vi'*(Q)
we have to take the (weighted) superposition of the spec-
tra corresponding to the respective distortions. If we take
into account the finite width of |¢d (Q)|? it follows from
equation (9) that the spectral features are broadened due
to the Q-dependence of V,NeF1(Q) - V" (Q). We will con-
sider a specific example in Section 3.

This analysis leads to our main conclusion. For the un-
doped system it follows from equation (5) that Qum = 0.
Consequently, the spectrum is just the broadened spec-
trum of the same system without EPI (H,, = 0). The
dispersion of the (H., = 0)-quasi-particle peak shows up
in the k-dependence of the broadened peak in the low
binding energy part of the spectra. This approach is par-
ticularly useful for the undoped system as it allows state-
ments about the spectrum for H,j, # 0 from the knowledge
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of the spectrum for H., = 0. For the doped system Qn
is typically non-zero if the EPI is strong. The spectrum

pkzi( , Qmin) can then be very different from the spec-

trum for Q = 0. Therefore, even if the (H, = 0)-spectrum
is known, in general no information about the spectrum
of the system with EPI can be deduced. In this context
we notice that there may be several degenerate minima at
Quin # 0 such that the ground-state has an undistorted
lattice in the sense of a vanishing expectation value of Q.
The spectrum for Hc, # 0, nevertheless, corresponds to
a superposition of the spectra for Q-values around the
minima Q,,;, # 0.

The numerical calculation of spectral functions using
the approximation in equation (9) can be quite efficient
compared to other methods typically used to obtain spec-
tra. In general, it is much easier to obtain the spectrum
Pic ;?( , Q) for a system without EPI but a given distor-
tion Q than for a system with EPI. If the initial state’s
phonon wavefunction qbévoe (Q) is known (e.g. in the case
of an undoped system) its square can be used as a weight
function in a Monte Carlo integration over the phonon
coordinates in equation (9). The numerical effort is inde-
pendent of the strength of the EPI. On the other hand,
if e.g. exact diagonalization is used to obtain directly
the ARPES spectrum of a system with EPI, calculations
become computationally very demanding with increasing
coupling strength as the truncated phonon Hilbert space
grows larger and larger.

In order to improve the present approximation we have
to include also the kinetic energy of the Z\Phonons in the
resolvent of the Hamiltonian. Then, |E;*(Q)) in equa-
tion (6) must be expanded with respect to both electronic
and phononic basis functions in the adiabatic approxima-
tion. From this, one obtains the following expression for

the spectral function:
Ne
RORIC Gt )

dQ (EN-FH(Q)[YIE) (Q))oma (Q)dos (Q)
(11)

Nev:F
Ak,a

Each eigenstate of H in the (N, F 1)-electron sector repre-
sents a possible final state. It contributes to the spectrum
at its eigenenergy (shifted by the ground-state energy of
the system with N electrons). The intensity is propor-
tional to the squared overlap of final and initial state, i.e.
the ground-state of the system with N, electrons plus an
additional hole or electron. Two conditions must be ful-
filled for this overlap to be large.!

i) As the initial phonon wavefunction ¢)¢(Q) is local-
ized around the minimum Q,,;, of VONe (Q) and has no
nodes, the final phonon wavefunction ¢N<¥1(Q) must
have a large and slowly varying amplitude in this region,
too. This will be the case for final states with energies

! In the following discussion we assume a non-degenerate
minimum of V;'*(Q) for simplicity. The arguments can be eas-
ily generalized to the case of (quasi-)degenerate minima.

eNeFl ~ VNeF1(Q,n). For smaller energies the region
around Qn;n is classically forbidden and the amplitude
of the final phonon wavefunction becomes exponentially
suppressed, whereas for larger energies the kinetic energy
increases and the wavefunction oscillates faster. In both
cases the integrated overlap of initial and final phonon
wavefunction becomes smaller again.

ii) The electronic matrix element (EN-F1(Q)[¢|E)(Q))
must be large around Q,,.;,. It is sufficient to consider its
value only in this region as the initial phonon wavefunc-
tion is small elsewhere.

Altogether this leads to the following picture: For a
system without EPI but with a given lattice distortion
Qnin the spectrum consists of §-functions at the energies
ENF1(Q,in). If the EPI is switched on, spectral features
with large intensities will still appear at similar energies
and with similar relative weight but they will be broad-
ened by phonon sidebands. The quasiparticle’s dispersion
and weight, however, can be strongly altered by the EPI.
In general, the effective phonon potential VN F1(Q) cor-
responding to the electronic ground-state in the system
with N F 1 electrons has minima at Q # Q.uin. The
ground-state phonon wavefunction ¢ CJFI(Q) is localized
around these minima. Consequently, there is only little
overlap with the phonon wavefunction in the initial state
which peaks around Q,,;» and in the spectrum the peak
lowest in binding energy has only very small weight.

It is interesting to discuss the problem above in terms
of a sum-rule concerning the first moment (center of
gravity) of the spectrum. For the undoped system with
N? electrons that has no phonons excited in the initial
state, one can show under rather general assumptions that
the first moment of the (inverse) photoemission spectrum
does not depend on the strength of the EPI. Therefore, the
center of gravity of the spectrum does not change when

the EPI is turned on. If in the absence of EPI Aﬁ%’;(w)
has only one peak for a given k, e.g. if there is only one
band and no electron-electron interaction, the center of
gravity equals the position of the quasi-particle peak. Be-
cause of the sum-rule we then expect just a broadening
but no shift of the quasi-particle peak upon switching on
the EPI. In case of electrons interacting with themselves,

however, already for systems without EPI Allz %:F(w) usu-
ally has several peaks for a given k and the first moment
does not correspond to the quasi-particle energy. Then,
the sum-rule is not able to tell us how the individual
peaks are influenced by the EPI and cannot be used to
argue for prominent features in the spectrum dispersing
approximately like the quasi-particles in the system with-
out phonons.

3 Holstein model

In the following we demonstrate the validity of the argu-
ments given above with several examples. First, we con-
sider the one-dimensional N-site Holstein model with pe-
riodic boundary conditions for which the electronic part
of the Hamiltonian just contains nearest-neighbor hopping
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with amplitude t¢:

Hy = -2t Z cos(k

ck oCho (12)

where CL , creates an electron with momentum k and spin

o. The electrons are coupled to dispersionless phonons
with frequency wy, as described by

ep - \/— Z V 2wPthck+q o

q,k,0

(13)

The strength of the interaction is given by g. The (¢ = 0)-
phonon mode couples to the total number of electrons,
N,. We can therefore write H = Hy + Hs, where

g 1
H, = Ne\/—N\/ 2wpnQo + 3 (11§ + wy, Q) (14)
can be solved exactly [9]. The spectral function

A,i\f::F(Q) (w) obtained for Hs only needs to be convoluted
by the known result for Hq,

az%

=0

ANFW () w+ (1 F 2Ne)awpn — lwpn),

(15)
where a = (g/wpr)?/N, in order to get AkN;’;(w) as de-
fined in equation (11). We will therefore restrict our dis-
cussion to A e’:F(Q)( ) in the following.

We spemﬁcally consider a two-site system (N = 2) [13]
and calculate the inverse photoemission spectrum for cre-
ating an electron in both the empty (undoped) system
and the system that already contains an electron of oppo-
site spin. There is then only one phonon coordinate @ in
Hs which we treat as a parameter in solving the part of
Hjy coming from He; + H,p. In the one-electron sector one
obtains the two eigenenergies

\/ +w hg

whereas there are four eigenergies in case of two electrons
with opposite spin:

ENE_l

0/1 (16)

Ne=2 _
E0/3 =F2

Ne=2 _
+thg Q E1/2 =0. (17)
For numerical calculations we choose t = 1, wy,;, = 0.1, and
g =0.6. As wpp/t is small our adiabatic approximation is
justified. The effective potentials one obtains by adding
the harmonic potential wﬁthr /2 to the eigenenergies in

equation (16) are shown in Figure 1.

We first consider the approximation when the kinetic
energy of the phonons is neglected in the resolvent of the
Hamiltonian and for which the spectral function is given
by equation (9). The neglected terms are proportional to
wpp, SO we cannot expect to resolve fine-structure in the
spectra on that order. But it turns out that this approxi-
mation still describes the overall broadening correctly on a
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Fig. 1. Effective potentials V,(Q,) in the two-site Holstein
model with one electron as functions of the phonon coordi-
nate Qr for t =1, wpn = 0.1, g = 0.6. Some selected phonon
wavefunctions are also shown, see text.

larger scale proportional to ,/w,; [12]. The phonon wave-
function in the initial state is known exactly for the un-
doped system, see equation (5). Here

605 Q) = (wpn /)M exp(—wpnQ2/2).

In the system with one electron the lowest effective po-
tential V'*='(Q,) has two minima at Q around which
we can treat it as harmonic potential with renormalized
phonon frequency @ = \/(82%N821/8Q3r)|§i~ This leads

to the approximation
- Q:)%/2).

doo— (Qr) ~ WZ( ) oxp(—0(Qx
(19)

Following reference [12], we can expand the argument of
the d-functions in equation (9) up to first order in Q
around Q. If we further assume that the electronic ma-
trix elements vary only weakly around @i the integration
over Q. in equation (9) can be eliminated and we obtain
the following result:

(18)

AT () &

Z 12

where a,,, = Vn%bi

w _bg (W_am)2

ALl B (e ™ (20)

- V01|§i and bm = (8V£/6Qw)|§i
This approximation is shown in Figure 3 for £ = 0 to-
gether with the spectrum obtained from exact diagonal-
ization. The agreement with the Gaussian lineshape pre-
dicted by equation (20) is very good. Ouly to resolve
the fine-structure on a scale given by the phonon fre-
quency wpp one has to go beyond the present approxima-
tion. As indicated schematically by the arrows in Figure 2
the spectrum can indeed be understood as the spectrum
of electrons in a system without EPI but a given distor-
tion @i- The broadening is due to the finite width of
the phonon wavefunction in the initial state. There is no
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Fig. 2. Left panel: Effective potentials V2 (Qx) — V5 (Qx) +

Vi (Qx)lg,. for the two-site Holstein model with two electrons

with opposite spin as functions of the phonon coordinate Q~

for t =1, wpn, = 0.1, g = 0.6 and phonon wavefunction qb(%e:l

(dotted line). Right panel: Agi;i’+(2)(w) rotated by 90°.
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Fig. 3. Spectrum for adding an electron to a two-site Holstein
model with one electron of opposite spin (¢ = 1, wpr = 0.1,
g = 0.6). The approximation AkN:e;i’HQ)(w) (Eq. (20)) is shown
as dashed line together with the spectrum obtained from exact
diagonalization (thin line). Both spectra have been convoluted
with a Lorentzian (FWHM=0.1).

structure in the spectrum arising from the highest effective
potential as the corresponding electronic matrix element
is negligible.

In the case of inverse photoemission from the empty
system the phonon wavefunction in the initial state is lo-
calized around @), = 0. The slope of both effective poten-
tials Vﬁ;g}l (Qr) vanishes at this point. An approxima-
tion analogous to equation (20) would therefore result in

~ A0 0
Ag§:0,+(2)(w):p£{§:0,+(% Qr = 0), i.e. the unbroadened
spectrum of the undistorted system without EPI. If we
evaluate equation (9) without any further approximation
we obtain the spectra shown in Figure 4. The comparison
with results from exact diagonalization shows that this ap-
proximation cannot reproduce the fine-structure and for
k = 0 does not give spectral weight above w = —1 (except
from broadening), but it still gives the right order for the
broadening of the peaks.

In order to understand also details of the spectra we
have to use equation (11) which results from making no
approximation other than the initial adiabatic one. One

10

0 L
-2 -1 0 1 2

Fig. 4. Spectra for adding an electron to an empty two-site
Holstein model (¢t = 1, wpr = 0.1, g = 0.6). The approximation
A;\i‘gio’ﬂ% (w) (Eq. (9), thin lines) and results from exact diag-
onalization (bold lines) are shown for both k£ = 0 (solid lines)
and k = 7 (dashed lines). All spectra include a Lorentzian
broadening (FHWM=0.06).
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Fig. 5. Spectra A]kvgzo’HQ)(w) for adding an electron to an
empty two-site Holstein model (t=1, wpr = 0.1, g = 0.6) as
given by equation (11). The spectra for both k = 0 (solid line)
and k = 7 (dashed line) are shown with Lorentzian broadening

(FWHM=0.01). Observe the logarithmic intensity scale.

has to solve equation (3) for each effective potential to ob-
tain the phonon eigenfunctions needed in equation (11).
The resulting inverse photoemission spectra for creating
an electron with momentum & = 0 or £ = 7 in the empty
system are shown in Figure 5. They are practically in-
distinguishable from those we obtained using exact di-
agonalization. This shows that the adiabatic approxima-
tion works very well for the chosen parameters. For the
electronic matrix element in equation (11) one needs the
Q) r-dependent electronic eigenstates corresponding to the
eigenenergies in equation (16):

|Eoyi ) =

Nojn <(t L e wphgma) 0) - mng) (21)
with

N — (Sign(Qw))m 7 (22)

\/(t + (— 1) /P 0 g?Q2)” + wpng2Q2
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where |0) and |7) denote the k = 0 and k = 7 one-electron
states and m = 0, 1.

Let us consider e.g. the case where we create an elec-
tron with momentum k& = 0 in the empty system. The ini-
tial electronic state is then |0). The initial state’s phonon

wavefunction <Z)IOV08 ~° (dashed line in Fig. 1) is a bell-shaped
Gaussian centered around @), = 0. This effectively limits
the integration over Q in equation (11) to a small region
around the origin. Here |E}*=!) ~ [0) and |E{=!) =~ |r).
Therefore, the relevant electronic matrix element in this
example is (Eév <=110). It has even parity with respect
to Q. So, according to equation (11) final states with
the electronic configuration |Eév€:1> and a correspond-

ing even-parity phonon wavefunction qb(])\[;:l that strongly

overlaps with qbévog =0 give rise to large spectral intensity.
We show in Figure 1 the even-parity phonon wavefunction

é\if,zl with the largest overlap offset along the ordinate by
its eigenergy. It has a sizable and slowly varying amplitude
around @), = 0 because its eigenergy is close to the local
value of the effective potential which at @, = 0 equals
the (k = 0)-eigenenergy —t of the system without EPL
Therefore, the peak with largest weight appears around
this energy in the spectrum (solid line in Fig. 5). The
sidepeaks arise from final states with even-parity phonon
wavefunctions with lower or higher eigenenergies whose

0_
overlap with <Z)évoe =% decreases. Figure 1 also shows the even
parity ground-state phonon wavefunction d)(%e:l in the

0_
double-well potential. Clearly, its overlap with qﬁé\([f =0 is
very small leading to a strongly suppressed quasi-particle

0_
peak in A,ivéo_ 2’+(2). Because of the large dimensionless
EPT constant A = g*/(wpnt) = 3.6 we are well in the po-

laronic regime.

If, on the other hand, an electron with momentum k =
7 is created in the empty state one finds using similar
arguments as before that final states leading to a large
spectral intensity must have the electronic configuration
|ENe=1). Their phonon wavefunction ¢'¢= must strongly

0_
overlap with qbé\ge =% and be of even-parity. In this case the
lowest energy phonon wavefunction qbf([f:l in the upper
effective potential (shown in Fig. 1) has the largest overlap

because its eigenenergy is closest to E{VGZI(Q7r =0) = +t.

N2=0,+(2) . .
Therefore, A<, (w) (dashed line in Fig. 5) shows a
prominent peak at w &~ +t.

As (EN<=10) ((EY<="|x)) only vanishes completely at
Qr = 0 the spectrum for k = 0 (k = 7) also shows weak
structures around w = 4+t (w = —t) where the coupling is
now to phonon wavefunctions of odd parity. The density of
coupling phonon states is different around w = —t and w =
+t. E.g., the fact that the upper effective potential has a
minimum around @, = 0 results in an asymmetric shape

0
of Ai\f’;ﬁ@) (w) around w = +t as no phonon eigenstates in
this effective potential can have eigenenergies below +t.
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Fig. 6. Spectral functions AkNE':O’_(w) for creating a hole in
the undoped 4-site Holstein-t-J model (t=1,J =03, wpn =
0.1, g = 0.8). k = 0: solid line, k¥ = £7/2: dashed line, k =
m: dotted line (Lorentzian broadening: FWHM=0.01). Arrows
show positions and weights of corresponding peaks for g = 0.

4 t-J model with phonons

As a second example we study the one-dimensional N-site
Holstein-t-J model with periodic boundary conditions.
This model also includes electron-electron interactions.
The electronic part of H is given by the usual ¢-J Hamil-
tonian

Ha ==t 3 (& 81,0+ e
+ JZ (Si Siy1 — —nﬂ:“) (23

n

where ¢, , creates an electron with spin o on site ¢ if this
,

site was previously empty, n; = & &

o CioCioo and S; is a
spin—% operator. Besides the hopping ¢ there is also an ex-
change coupling parameter J. As in the Holstein-model we
consider an interaction with dispersionless phonons where
the coupling is now to empty sites (holes):

Hep = % ; /2wpnQq(1 — nj)e'™. (24)

The system with one electron per site corresponds to the
undoped case where the EPI vanishes. The (¢ = 0)-phonon
mode can be treated separately again, the only difference
being that the coupling is now proportional to the total
number of empty sites Np, not to the total number of
electrons N..

For numerical calculations we consider a 4-site system
witht =1, J = 0.3, wpp, = 0.1, and g = 0.8. The photoe-
mission spectra for destroying an electron with momentum
k and spin o were obtained using exact diagonalization
with up to 200 phonons per basis state for solving the
problem without the (¢ = 0)-mode and subsequent convo-
lution with AN*=0:—(1)(w) (Eq. (15) with N}, = 0 instead
of N.). The results are displayed in Figure 6 together with
arrows indicating the peaks in the corresponding spectra
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Fig. 7. Inverse photoemission spectra (k = (3,1)n/5) for the 10-site t-J model with one interacting phonon mode (¢t = 1,

J =04, wpn = 0.1, g(r, ) = 1.6): (a) from the undoped system,

(b) from the 10%-doped system. The corresponding spectra for

systems without EPI are shown by dashed lines with their amplitude flipped for clarity. A Lorentzian broadening of FWHM=0.04

has been applied.

for ¢ = 0. Without EPI there is only one peak both for
E = 0 (at —0.55) as well as for £ = 7 (at 1.45). For
k = 4m/2 the spectrum has two peaks at —1.139 and
2.339 as a result of the electron-electron interaction.

Again, the dispersion found in the system without EPI
is traced quite accurately by a broad peak in the case of
strong EPI. The spectrum for k = 4+x/2 also illustrates
our comments at the end of Section 2 on the sum-rule
concerning the first spectral moment. Since the spectrum
has two peaks for k = +7/2, the sum rule cannot tell us
how the peaks are broadened. Many other spectra would
also have been consistent with the sum-rule, e.g. spectra
where the peaks are shifted. The arguments based on the
adiabatic approximation, however, show that both peaks
should be broadened with their individual center of gravity
remaining roughly unchanged in agreement with the exact
calculations.

Finally, we consider the ¢-J model in two dimensions
on a tilted 10-site cluster with periodic boundary condi-
tions. To simplify calculations we assume that the EPI is
described by equation (24) but with a g-dependent cou-
pling constant gq. In the following we choose g(x ) = 1.6
and gq = 0 for all other q # (m,7) so that effectively
there is only one phonon mode that interacts with the
electrons. The other parameters are t = 1, J = 0.4, and
wpp, = 0.1. Figure 7 shows the inverse photoemission spec-
tra for k = (3,1)7/5 from both the undoped (Fig. 7a)
and the 10%-doped system (Fig. 7b). The EPI has been
switched on and off (solid line vs. dashed line with flipped
amplitude).

The spectra from the undoped system confirm again
our general expectations from Section 2. The EPI basically
broadens the structures in the original spectrum. This in-
cludes the quasi-particle peak at low binding energies. In
contrast, the spectrum from the doped system changes
quite differently when the EPI is switched on. Although
the spectrum again develops several broad features they
cannot be related anymore in a simple way to the struc-
tures in the spectrum found without EPI. We have also

varied k and found that the dispersion of the broad fea-
tures is different from the quasi-particle dispersion in the
system without EPI. According to equation (9) the spec-
tra rather correspond to broadened versions of spectra one
would obtain in a purely electronic, but distorted system.

5 Conclusions

We have introduced an adiabatic approximation for calcu-
lating ARPES spectra from systems with strong coupling
of doped carriers to phonons. The effective phonon poten-
tial for the initial state is calculated as a function of the
phonon coordinates and its minima are found. We show
that the spectrum with electron-phonon interaction (EPI)
is then related to a broadened average of spectra with-
out EPI calculated for distorted lattices corresponding to
the minima of the effective potential. We also studied the
additional approximation of neglecting the kinetic energy
of the phonons in the resolvent of the Hamiltonian corre-
sponding to the ARPES Green’s function. The spectrum is
then expressed as superposition of spectra from distorted
lattices without EPI, using the square of the initial state’s
phonon wave function as a weight function (see Eq. (9)).

In either form, the theory becomes particularly simple
if the EPI can be neglected in the initial state. The phonon
wave function is then centered around the undistorted lat-
tice, and the spectrum with EPI can be directly related
to the (broadened) spectrum without EPI. In the case of
strong EPI in the initial state, the minima of the effective
potential correspond to distorted lattices. The spectrum
with EPI is then related to the (broadened) spectra of dis-
torted lattices without EPI. Therefore, the knowledge of
the spectrum without EPI for the undistorted lattice is in
general not very informative with respect to the spectrum
with EPL.

Our results support the interpretation of ARPES on
undoped high-T,. cuprates [6,7] and explain why in nu-
merical calculations [8] the quasi-particle dispersion from
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purely electronic models shows up almost unchanged in
the dispersion of incoherent features in the spectra ob-
tained with EPI.
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